top of page

MAXIMUM AVERAGE POWER TRANSFER

 

 

The maximum power transfer theorem for DC circuit, we can determine the condition for an AC load to absorb maximum power in an AC circuit. For an AC circuit, both the thevenin impedance and the load can have a reactive component. Although these reactances do not absorb any average power, they will limit the circuit current unless the load reactances cancels the reactance of the thevenin impedance. For the maximum power transfer, the thevenin and load reactances must be equal in magnitude but opposite in sign.

 

 

 

If the load is purely real, then RL = √(Rth)^2 + (Xth)^2 = |Zth|

 

Zth = Rth + jXth    ;     ZL = RL + jXL

 

 

 

Prove that:

XL = -Xth    &        RL = Rth

 

SOLUTION: ( THIS IS BASED ON MY OWN SOLUTION)

 

P = 1/2 (I)^2 (RL)

I = VTH/Zth + ZL

P = 1/2 |Vth/(Zth+ZL)|^2 (RL)

 

P = 1/2 |Vth/(Rth+jXth)+(RL+jXL)|^2 (RL)

 

P = 1/2 |Vth^2 (Rth + jXth + RL + jXL)^-2| (RL)


dP = 1/2 |Vth^2 (Rth + jXth + RL + jXL)^-2| d(RL) + 1/2 (RL) |Vth^2 (dRL) (-2) (Rth + jXth + RL + jXL)^-3|

 

dP/dRL = 1/2 |Vth^2 (Rth + jXth + RL + jXL)^-2| + 1/2 (RL) |Vth^2 (-2) (Rth + jXth + RL + jXL)^-3| = 0

 

          (1/2 Vth^2)                -    RL                 (Vth^2)                  = 0

(Rth + jXth + RL + JXL)^2                (Rth + jXth + RL + jXL)^3

 

1   -                RL                  =   0

2      Rth + jXth + RL +jXL

 

1    =                      RL               

2              Rth + jXth + RL +jXL

 

Rth + jXth + RL + jXL = 2RL

 

RL = Rth + j (Xth + XL)

 

RL - Rth = j (Xth +XL)

 

(RL - Rth) - j (Xth +XL)  =  0

 

-j (Xth +XL) = 0

 

Xth = -XL

 

XL = -Xth

 

 

RL - Rth = 0

RL = Rth

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Example:

 

 

 

1.       Given:

           V = 200∠8 V

            I = 10∠30 A

           Z = 20∠-22 = 18.54 - J7.49ohms

 

 

 

 

2.  Get the Maximum Power in ZL.

 

 

 

 

 

 

P = 1/2 (I)^2 (RL)

    

P = 1/2 (10)^2 (18.54)

P = 927.2W

Using Thevenin's Theorem, open the current source to get the Zth.

Zth = 8+j6Ω || 5Ω

       =   (8+j6Ω) (5Ω) 

           (8+j6Ω)+(5Ω)

Zth = 3.415 + j0.73Ω

 

In order to get the ZL, get the complex conjugate of Zth...

 

ZL =  3.415 - j0.73Ω

 

 

Get Vth, Using Current Division..

 

I =      (2A) (8-j4Ω)         =   0.780 - j0.98

      (8-j4Ω)+(5+j10Ω)

 

Vth = (0.780 - j0.98A) (5Ω)

Vth = 6.247∠-51.34 V

 

 

P = 1/2 (I^2) (RL)

P = 1/2 |Vth/(Rth+jXth)+(RL+jXL)|^2 (RL)

P = 1/2 (Vth^2 (RL)) / (2Rth)^2

P = 1/2 (Vth^2 RL) / (4Rth^2) ; RL = Rth

 

P = Vth^2

      8Rth

 

P = (6.247)^2

       8(3.415)

P = 1.43 W

MEL TECH

Circtronics​

© 2023 by TECH TEAM. Proudly made by Wix.com

T: 083-552-0271
  • facebook-square
  • Twitter Square
  • google-plus-square
bottom of page